((2)/(2x+5))+((3)/(2x-5))=((10x+5)/(4x^2-25))

Simple and best practice solution for ((2)/(2x+5))+((3)/(2x-5))=((10x+5)/(4x^2-25)) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for ((2)/(2x+5))+((3)/(2x-5))=((10x+5)/(4x^2-25)) equation:


D( x )

2*x-5 = 0

2*x+5 = 0

4*x^2-25 = 0

2*x-5 = 0

2*x-5 = 0

2*x-5 = 0 // + 5

2*x = 5 // : 2

x = 5/2

2*x+5 = 0

2*x+5 = 0

2*x+5 = 0 // - 5

2*x = -5 // : 2

x = -5/2

4*x^2-25 = 0

4*x^2-25 = 0

4*x^2 = 25 // : 4

x^2 = 25/4

x^2 = 25/4 // ^ 1/2

abs(x) = 5/2

x = 5/2 or x = -5/2

x in (-oo:-5/2) U (-5/2:5/2) U (5/2:+oo)

2/(2*x+5)+3/(2*x-5) = (10*x+5)/(4*x^2-25) // - (10*x+5)/(4*x^2-25)

2/(2*x+5)+3/(2*x-5)-((10*x+5)/(4*x^2-25)) = 0

2/(2*x+5)+3/(2*x-5)+(-1*(10*x+5))/(4*x^2-25) = 0

(2*(2*x-5)*(4*x^2-25))/((2*x+5)*(2*x-5)*(4*x^2-25))+(3*(2*x+5)*(4*x^2-25))/((2*x+5)*(2*x-5)*(4*x^2-25))+(-1*(10*x+5)*(2*x+5)*(2*x-5))/((2*x+5)*(2*x-5)*(4*x^2-25)) = 0

2*(2*x-5)*(4*x^2-25)+3*(2*x+5)*(4*x^2-25)-1*(10*x+5)*(2*x+5)*(2*x-5) = 0

40*x^3-40*x^3+20*x^2-20*x^2-250*x+250*x-125+125 = 0

0 = 0

0/((2*x+5)*(2*x-5)*(4*x^2-25)) = 0

0/((2*x+5)*(2*x-5)*(4*x^2-25)) = 0 // * (2*x+5)*(2*x-5)*(4*x^2-25)

0 = 0

x belongs to the empty set

See similar equations:

| 1w+wh+1h=a | | (5-4x)(3-2x)= | | 9/4+4m/7=83/28 | | (3p+8)(2p-3)=0 | | -5p-3p=-104 | | 2/3x-1/2y=0 | | 4x-4y=28 | | Y-1=4/3(x+6) | | -2x^2=-7x+15 | | 4x=5y-1 | | 8x=12-10x | | -5n=4(0)+8 | | 1w+wh+1h=w | | 2/3(9b-27)=37 | | 11-6y=10-4(y+3) | | 4x-(5x+5)=3x+7 | | 9/4+4m/6=83/28 | | 3(x-2)-4(2x+5)=9 | | [x+3]=-11 | | 100[0.02(n+9)]= | | 10+11x-6x^2=0 | | V+2=-5v+2 | | 3(x-2)-4(2b+5)=9 | | (z+3)^2=-81 | | 3(2x-1)+5=6x+1 | | 3x-16x=7+2(-8x-3) | | 3y+7=5-3 | | 144x^2+24x+1=x^2+4x+4 | | (1/4)+(1/2)r=4 | | 10y=6-11y | | t+4(1+t)=9t | | (24n+3.5)=24n |

Equations solver categories